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LE’ITER TO THE EDITOR 

Uniaxial compression effects on 2~ mixtures of ‘hard’ and 
‘soft’ cylinders 

T Travers, D Bideau, A Gervoist, J P Troadec and J C Messager 
Groupe de Physique Cnstalline, UA CNRS 040804, UER SPM, UniversitC de Rennes I,  
35042 Rennes Cedex, France 

Received 4 July 1986 

Abstract. An experimental study of uniaxial compression of a mixture of ‘hard’ and ‘soft’ 
cylinders is made. The macroscopic strain-stress law strongly depends on the geometrical 
and compositional heterogeneities. Two changes in the behaviour are observed: one is 
weak, at the percolation threshold, and the other is strong, at the ‘rigidity’ threshold. 

The mechanical behaviour of dense granular media is extremely complex, even in the 
simple case of the strain under weak uniaxial pressure. Indeed, this strain depends 
on the medium structure, the nature of the contacts between grains and their geometry, 
eventually the wall effects, and also on the amplitude of the applied pressure: these 
systems generally have a non-linear strain-stress characteristic, as we shall see later. 

Therefore we are led to study simplified experimental models. Some authors (Dantu 
1957, de Josselin de Jong and Verriujt 1969, Faugeras and Gourves 1980) have already 
underlined the interest of a two-dimensional model called the Schneebeli model 
(Schneebeli 1956), which is a two-dimensional ( 2 ~ )  packing of cylinders with parallel 
axes. This model is of great interest for several reasons. 

(i)  ‘Grains’ have a simple geometrical shape. 
(ii) It is relatively easy to determine the geometry of the packing from direct 

observation or photograph. The geometry is difficult to study in three-dimensional 
( 3 ~ )  experiments with spheres and spheroidal objects. 

(iii) Photoelastic experiments can give some information on the space repartition 
of the intergranular stresses (at a ‘microscopic’ level) and then allow better understand- 
ing, at least phenomenologically, of the effects of a macroscopic stress on the system. 
This is illustrated by a very beautiful film by DantuS. 

Most of the mechanical and photoelastic studies on this model were carried out 
on packings of cylinders with the same physical properties, but with a grain size 
distribution (Dantu 1967, Drescher and de Josselin de Jong 1972): in this case, the 
medium presents a ‘strong’ geometrical disorder (Rubinstein and Nelson 1982), as in 
real media. For a binary distribution in particular, photoelastic studies have shown 
that this distribution was not mechanically neutral: the paths of the largest stresses 
preferentially pass through the large grains (Oger er a1 1986). 

Nevertheless, even in the case of regular packings of equal size cylinders, Dantu 
(1957) showed, with photoelastic experiments, that the repartition of the stresses is 
inhomogeneous: the strongest stresses draw up a network ignoring a large part of the 

t Permanent address: Service de Physique ThCorique, CEN Saclay, 91 191 Cif-sur-Yvette Cedex, France. 
t. This film is presently available at the Laboratoire Central des Ponts et Chausskes, Pans. 
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grains in the system. In the case of uniaxial compression, links follow the principal 
stress direction. This heterogeneity in the stress distribution is, in fact, created by weak 
geometrical heterogeneities-for instance, weak differences in the cylinder diameters. 
It is of great importance in the case of weak strains as here. 

In many granular media geometrical heterogeneities and heterogeneities arising 
from composition (grains with different physical properties) coexist. Thus, mixtures 
of conducting and insulating spheres are good structural models for percolation 
(Troadec and Bideau 1981). For us, it is interesting to study, on a Schneebeli model, 
the effects of a ‘mechanical’ contrast on mixtures of ‘hard’ and ‘soft’ grains. This letter 
is a first experimental approach to this problem, in the particular case of equal size 
cylinders in regular triangular packings. 

The mixtures studied are composed of plexiglass (proportion p )  and rubber (propor- 
tion 1 - p )  cylinders, The ratio between bulk Young’s moduli is -2000. These materials 
have been chosen for two reasons: the ‘soft’ material must not be too soft, in order to 
avoid initial strains under gravity, and the plexiglass has the advantage of having a 
good photoelastic response. 

The length (2.5 cm) of the rods has been chosen to avoid a global buckling of the 
system under pressure. But there are fluctuations in the diameter of the plexiglass 
elements and their sections along the axis are not really circular; these defects are in 
part due to the annealing necessary to eliminate the residual stresses prejudicial to 
photoelastic studies. One can consider that their diameter is 4i. 0.1 mm. The variations 
of the rubber ‘grain’ diameter around the same mean value are very small. The packings 
are constituted by 48 horizontal rows, with alternately 44 and 45 sites (2136 ‘grains’). 
The size and the shape of the sample have been chosen to avoid wall effects, which 
can greatly modify the macroscopic deformation quantitatively and qualitatively (Dantu 
1967). These wall effects are essentially due to the friction between the grains and the 
wall of the container, and can lead to an important gradient in the spatial distribution 
of the constraints in the system along the pressure axis. In our case, several tests with 
different frictions at the wall show that these effects are unimportant. The system is 
put in a rigid frame and placed in an Instron 1175 universal testing machine. A vertical 
displacement Ah, at a given speed, is imposed on an upper plate and we measure the 
corresponding compressive force E 

The experiments are made at low speed (0.5 mm min-’): the observed phenomena 
are then speed independent. The force F varies in the range 0-2000 N. For the pure 
rubber samples, all the cycles are reproducible; for the compression, in the whole 
range studied, a power law is observed (figure 1): 

F =  F o ( A h / h ) ”  (1) 
with m - 1.4 f 0.1 and Fo - 4 x lo4 N. h is the initial height of the sample. For plexiglass, 
during the first application of the pressure, the first part of the compression is ‘plastic’, 
i.e. there are important deformations of the structure by grain sliding; following pressure 
cycles are reproducible and then we have, for the compression, the same law (1) with 
m -3.9i.0.3 and Fo- 10” N (figure 1). 

We observe such a power-law dependence for all the mixtures studied (any value 
of p between 0 and 1) and we examine the variations of the two quantities m and Fo 
(in fact In Fo, because of the great amplitude of the variations) with the composition 
P- 

Figures 2 and 3 summarise our experimental study. The values m and In Fo are 
averages obtained from independent measurements on at least three different samples 
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Figure 1. Measured compressive force F as a function of the imposed vertical displacement 
Ah for p = 0 and p = 1 .  At F = 2000 N, A h /  h - 10% for rubber, 1% for plexiglass. 

P 

Figure 2. Variations with p of the macroscopic exponent m of the experimental law (1 ) :  
F = F,(Ah/ h ) ” .  

with the same composition p (10 for p = 1). The curve In F , = f ( p )  shows a weak 
fracture at p = 0.5 and a stronger one at p = 0.7. The value p = 0.5 corresponds to the 
percolation threshold p c  of the regular triangular site problem. The variations of m( p )  
also show a fracture at p = 0.7; the accuracy of the measurements does not allow us 
to decide whether or not there is a behaviour change at p = 0.5. 

The first problem is the justification of the experimental power law (1). At the 
microscopic level, the stress transmission in a granular material is localised at the 
contact between grains where most of the deformation takes place. In the case of 
spherical grains, the stress f applied to a contact, assumed to be radial, is related to 
the decrease Ad of the distance between the grain centres by the Hertz law 

where Ei and Ri are the bulk Young’s modulus and the radius of the grain i, respectively, 
f =  d E l ,  E 2 9  RI ,  R d ( W ”  (2) 
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Figure 3. Variation with p of In Fo, where F,, is the prefactor of the experimental law ( 1 ) .  

and x = 1.5. In the case of cylinders, it is not realistic to consider that the contact is 
perfect all along the axis: the cylinders are weakly crossed. In this case, we again have 
a law like (2) with the same exponent x = 1.5 as for spheres (Landau and Lifshitz 
1959). In fact, the Hertz law does not take into account the microscopic roughness of 
the grain surface nor the possible tangential component of the stress. Nevertheless, 
these two defects will not lead to sensitive variations of the value of the exponent x 
(Mindlin 1954, Georges 1986). Experimentally, for two plexiglass half-cylinders in 
contact, and for a range of stresses larger than that between two grains in our samples, 
a Hertz law is found with x = 1.8 kO.1, in agreement with the above provisions. 

According to Hooke’s theory, at the macroscopic level a homogeneous solid 
submitted to a weak and slow uniaxial compression has an axial strain E ,  = Ah/ h 
related to the stress U, by 

where E,  is the Young’s modulus in the direction of the compression, v is the Poisson 
ratio and KO is the coefficient of lateral pressure; these terms are supposed to be 
constant. Generally, the granular materials do not have such a linear response, because 
of the complexity of the deformation mechanisms: the ‘Young’s modulus’ depends on 
the macroscopic stress applied to the system. One can admit an incremental form of 
(3), du, = E ’  de,, where E’ is the uniaxial modulus of deformation. With the hypothesis 
of a power law between E’ and U, (hypoelasticity in the sense of Truesdell), we have 
a macroscopic law (Feda 1982): 

E,  = (4) 

with O <  m ’ s  1. 
The experimental law (1) and the law (4) have the same form, with m‘= ( m  - l) /m. 

However, it is difficult to relate the macroscopic parameters to the different mechanisms 
of the deformation in the two cases. 
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In our mixtures, the deformation depends on several factors whose relative import- 
ance varies with the composition. Our results could be interpreted in terms of 
mechanical percolation. However, because of the small size of our system, we only 
study the non-critical aspects of the problem. 

The mechanical behaviour of the samples appears to be different above and below 
p - 0.7. This value corresponds to a rigidity threshold pR, i.e. the composition above 
which the ‘hard’ infinite cluster is stable against the macroscopic force. This threshold 
pR is comparable to pcen = 0.65 f 0.005 obtained by Lemieux et al (1985) on triangular 
elastic networks with central forces; in particular, the triangles formed by three 
plexiglass grains in contact play an important role in the stable structure. Between 
the percolation and the rigidity thresholds ( pc  < p < pR) the connected cluster of hard 
grains is not stable against forces, as we have verified by photoelastic experiments. 
The sample is placed between crossed polarisers. The stressed grains are then bright 
and the unstressed grains are dark. The division between stressed and unstressed grains 
is in fact Manichaean: only grains on which the constraints are larger than some value 
(+* appear bright. The number of bright grains then varies with the applied force and 
with the quality of the optical apparatus. Figure 4 shows a sample on which a 
macroscopic force F = 2000 N is applied. Above the threshold pR, the system presents 
a continuous network of bright links as described by Dantu (1957). Below pR we do 
not observe such a network, even if some finite lines of bright cylinders can be seen 
locally. 

Below pR, the system can be structurally described as formed by finite clusters 
( p  < p c )  and finite clusters plus one infinite cluster ( p  > p c )  of hard cylinders. These 
clusters are immersed in an elastic medium and all their components are relevant for 
the elastic properties of the system. So, for example, as seen in photoelasticity 

Figure 4. Photograph of a sample between crossed polarisers for p = 0.8. The ‘constrained’ 
grains appear light and the ‘non-constrained’ ones are dark (a macroscopic stress F = 2000 N 
is applied to the sample). 
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experiments, dead ends can dissipate some energy by contraction and bending. Part 
of the infinite cluster made up of rigid regions of hard cylinders has more and more 
importance in the transmission of the forces when p approaches pR. The change in 
the behaviour of Fo and eventually of m at pc could be attributed to the fact that the 
more important contribution to the energy comes from the bending of the links of the 
infinite cluster when this latter cluster appears (Kantor and Webman 1984). 

Above pR, the local inhomogeneities in the stable structure formed by plexiglass 
cylinders due to geometrical imperfections (deviation from a cylinder form, grain size 
distribution, etc) are of the same order as, or larger than, the local deformations (Hertz 
deformations). Beside composition heterogeneity, this is a new factor that must be 
taken into account in the variations of m and Fo. In particular, for p = 1, where we 
have only geometrical defects, these lead to an inhomogeneous spatial distribution of 
the intergranular stresses and the macroscopic deformation depends on large scale 
mechanisms; the macroscopic exponent (m = 3.9 i 0.3) is different from the microscopic 
one (m = 1.8 f 0.1 measured on two half-cylinders of plexiglass) and presents larger 
fluctuations from sample to sample (this is in contrast with the exponent 1.4k0.1 at 
p = 0 which is compatible with the Hertz exponent). Thus, experimental observations 
seem to show that geometrical defects are dominant above pR. 

The experiment described above is the first step of a more exhaustive study. Many 
points have still to be clarified. Presently, transmission of the forces above the threshold 
is analysed in special arrangements of soft and hard cylinders (to be published) and 
we are beginning experiments with ‘very hard’ grains to obtain a better contrast between 
phases (mixtures of steel and rubber cylinders). 

This work was partly initiated after many fruitful discussions with Professor E Guyon. 
We are grateful to Drs J M Georges, H J Herrmann, S ROUX, D Stauffer and I Webman 
for their comments and suggestions and M Ammi for his help in the experiment. This 
work was supported in part by a CNRS contract. 
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